Bibliography

1
C. Altona and M. Sundaralingam.
Conformational analysis of the sugar ring in nucleosides and nucleotides. a new description using the concept of pseudorotation.
J. Am. Chem. Soc., 94:8205-8212, 1972.

2
M.S. Babcock, E.P.D. Pedneault, and W.K. Olson.
Nucleic acid structure analysis.
J. Mol. Biol., 237:125-156, 1994.

3
R.E. Dickerson, K. Grzeskowiak, M. Grzeskowiak, M.L. Kopka, T. Larsen, A. Lipanov, G.G. Privé, J. Quintana, P. Schultze, K. Yanagi, H. Yuan, and H.-C. Yoon.
Polymorphism, packing, resolution, and reliability in single-crystal DNA oligomer analyses.
Nucleosid. Nucleotid., 10:3-24, 1991.

4
J. Donohue.
Hydrogen-bonded helical configurations of polynucleotides.
Proc. Natl. Acad. Sci. (USA), 42:60-65, 1956.

5
J. Donohue and K.N. Trueblood.
Base pairing in DNA.
J. Mol. Biol., 2:363-371, 1960.

6
C.M. Duarte and A.M. Pyle.
Stepping through an RNA structure: A novel approach to conformational analysis.
J. Mol. Biol., 284(5):1465-1478, 1998.

7
H.A. Gabb, S.R. Sanghani, C.H. Robert, and C. Prévost.
Finding and visualizing nucleic acid base stacking.
J. Mol. Graphics, 14:6-11, 1996.

8
D. Gautheret and R.R. Gutell.
Inferring the conformation of RNA base pairs and triples from patterns of sequence variation.
Nucl. Acids Res., 25(8):1559-1564, 1997.

9
D. Gautheret, F. Major, and R. Cedergren.
Modeling the three-dimensionnal structure of RNA using discrete nucleotide conformationnal sets.
J. Mol. Biol., 229:1049-1064, 1993.

10
S. Hanlon.
The importance of london dispersion forces in the maintenance of deoxyribonucleic acid double helix.
Biochem. Biophys. Res. Commun., 23:861-867, 1966.

11
S.R. Holbrook, J.L. Sussman, R.W. Warrant, and S.-H. Kim.
Crystal structure of yeast phenylalanine transfer RNA, II: Structural features and functional implications.
J. Mol. Biol., 123(4):631-660, 1978.

12
IUPAC-IUB Joint Commission on Biochemical Nomenclature.
Abbreviations and symbols for the description of conformations of polynucleotide chains.
Eur. J. Biochem., 131:9-15, 1983.

13
W. Kabsch.
A solution for the best rotation to relate two sets of vectors.
Acta Crystallogr., A32:922-923, 1976.

14
W. Kabsch.
A discussion of the solution for the best rotation to relate two sets of vectors.
Acta Crystallogr., A34:827-828, 1978.

15
R. Lavery and H. Sklenar.
The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids.
J. Biomol. Str. Dynam., 6(1):63-91, 1988.

16
F. Leclerc, R. Cedergren, and A.E. Ellington.
A three-dimensional model of the rev-binding element of HIV-1 derived from analyses of aptamers.
Nature Struct. Biol., 1:293-300, 1994.

17
F. Leclerc, J. Srinivasan, and R. Cedergren.
Predicting RNA structures: the model of the RNA element binding rev meets the NMR structure.
Fold. Des., 2(2):141-147, 1997.

18
F. Major, D. Gautheret, and R. Cedergren.
Reproducing the three-dimensional structure of a tRNA molecule from structural constraints.
Proc. Natl. Acad. Sci. (USA), 90:9408-9412, 1993.

19
F. Major, M. Turcotte, D. Gautheret, G. Lapalme, E. Fillion, and R. Cedergren.
The combination of symbolic and numerical computation for three-dimensional modeling of RNA.
Science, 253(5025):1255-1260, 1991.

20
E.A. Maxwell.
Methods of Plane Projective Geometry Based on the Use of General Homogeneous Coordinates.
Cambridge University Press, Cambridge, England, 1946.

21
L.F. Newcomb and S.H. Gellman.
Aromatic stacking interactions in aqueous solution: Evidence that neither classical hydrophobic effects nor dispersion forces are important.
J. Am. Chem. Soc., 116:4993-4994, 1994.

22
W.K. Olson.
Computational studies of polynucleotide flexibility.
Nucl. Acids Res., 10:777-787, 1982.

23
R.P. Paul.
Robot Manipulators: Mathematics, Programming and Control.
MIT Press, Cambridge, 1981.

24
W. Saenger.
Principles of Nucleic Acid Structure.
Springer-Verlag, New York, USA, 1984.

25
A. Sarai, J. Mazur, R. Nussinov, and R.L. Jernigan.
Origin of DNA helical structure and its sequence dependence.
Biochem., 27(22):8498-8502, 1988.

26
J. Sponer and J. Kypr.
Theoretical analysis of the base stacking in DNA: Choice of the force field and comparison with the oligonucleotide crystal structure.
J. Biomol. Str. Dynam., 11(2):277-292, 1993.

27
I. Tazawa, T. Koike, and Y. Inoue.
Stacking properties of a highly hydrophobic dinucleotide sequence, N6, N6-dimethyladenylyl(3' leads to 5')N6, N6-dimethyladenosine, occurring in 16-18-S ribosomal RNA.
Eur. J. Biochem., 109(1):33-38, 1980.

28
H. Weissig and P.E. Bourne.
An analysis of the protein data bank in search of temporal and global trends.
Bioinformatics, 15(10):807-831, 1999.



Webmaster